
Testing 1



Background
 Main objectives of a project: High Quality & High 

Productivity (Q&P)
 Quality has many dimensions

 reliability, maintainability, interoperability etc.

 Reliability is perhaps the most important
 Reliability: The chances of software failing
 More defects => more chances of failure => lesser 

reliability
 Hence quality goal: Have as few defects as 

possible in the delivered software!

Testing 2



Faults & Failure
 Failure: A software failure occurs if the behavior of 

the s/w is different from expected/specified.

 Fault: cause of software failure

 Fault = bug = defect

 Failure implies presence of defects

 A defect has the potential to cause failure.

 Definition of a defect is environment, project specific

Testing 3



Role of Testing
 Identify defects remaining after the review 

processes!

 Reviews are human processes - can not catch all 
defects

 There will be requirement defects, design defects 
and coding defects in code

 Testing:

 Detects defects

 plays a critical role in ensuring quality.

Testing 4



Detecting defects in Testing
 During testing,  a program is executed with a set of 

test cases

 Failure during testing => defects are present

 No failure => confidence grows, but can not say 
“defects are absent”

 Defects detected through failures

 To detect defects, must cause failures during testing

Testing 5



Test Oracle
 To check if a failure has occurred when executed with a 

test case, we need to know the correct behavior

 That is we need a test oracle, which is often a human

 Human oracle makes each test case expensive as 
someone has to check the correctness of its output

Testing 6



Common Test Oracles
 specifications and documentation,
 other products (for instance, an oracle for a software program 

might be a second program that uses a different algorithm to 
evaluate the same mathematical expression as the product under 
test) 

 an heuristic oracle that provides approximate results or exact 
results for a set of a few test inputs,

 a statistical oracle that uses statistical characteristics,
 a consistency oracle that compares the results of one test 

execution to another for similarity,
 a model-based oracle that uses the same model to generate and 

verify system behavior,
 or a human being's judgment (i.e. does the program "seem" to 

the user to do the correct thing?).

Testing 7



Role of Test cases
 Ideally would like the following for test cases

 No failure implies “no defects” or “high quality”

 If defects present, then some test case causes a failure

 Psychology of testing is important

 should be to ‘reveal’ defects(not to show that it works!)

 test cases must be “destructive”

 Role of  test cases is clearly very critical

 Only if test cases are “good”, the confidence 
increases after testing

Testing 8



Test case design

 During test planning, have to design a set of test 
cases that will detect defects present

 Some criteria needed to guide test case selection

 Two approaches to design test cases
 functional or black box

 structural or white box

 Both are complimentary; we discuss a few 
approaches/criteria for both

Testing 9



Black Box testing

 Software tested to be treated as a block box

 Specification for the black box is given

 The expected behavior of the system is used to design 
test cases

 Test cases are determined solely from specification.

 Internal structure of code not used for test case design

Testing 10



Black Box Testing…

 Most thorough functional testing - exhaustive 
testing

 Software is designed to work for an input space

 Test the software with all elements in the input space

 Infeasible - too high a cost

 Need better method for selecting test cases

 Different approaches have been proposed

Testing 11



Equivalence Class partitioning

 Divide the input space into equivalent classes

 If  the software works for a test case from a class 
the it is likely to work for all

 Can reduce the set of test cases if such equivalent 
classes can be identified

 Approximate it by identifying classes for which 
different behavior is specified

Testing 12



Equivalence Class Examples

In a computer store, the computer item can have a quantity 

between -500 to +500. What are the equivalence classes?

Answer: Valid class: -500 <= QTY <= +500
Invalid class: QTY > +500
Invalid class: QTY < -500

Testing 13



Equivalence Class Examples
Account code can be 500 to 1000 or 0 to 499 or 2000 (the 

field type is integer). What are the equivalence classes?

Answer: 

Valid class: 0 <= account <= 499

Valid class: 500 <= account <= 1000 

Valid class: 2000 <= account <= 2000 

Invalid class: account < 0 

Invalid class: 1000 < account < 2000 

Invalid class: account > 2000 

Testing 14



Equivalence class partitioning… 

 Rationale: specification requires same behavior for 
elements in a class

 Software likely to be constructed such that it either 
fails for all or for none.

 E.g. if a function was not designed for negative 
numbers then it will fail for all the negative numbers

 For robustness, should form equivalent classes for 
invalid inputs also

Testing 15



Equivalent class partitioning..

 Every condition specified as input is an equivalent class

 Define invalid equivalent classes also

 E.g. range 0< value<Max specified

 one range is the valid class

 input < 0 is an invalid class                                                                  

 input > max is an invalid class

 Whenever that entire range may not be treated 
uniformly - split into classes

Testing 16



Equivalence class…
 Once eq classes selected for each of the inputs, test 

cases have to be selected

 Select each test case covering as many valid equivalence 
classes as possible

 Or, have a test case that covers at most one valid class for 
each input

 Plus a separate test case for each invalid class

Testing 17



Example
 Consider a program that takes 2 inputs – a string s and 

an integer n

 Program determines n most frequent characters

 Tester believes that programmer may deal with diff 
types of chars separately

 Describe a valid and invalid equivalence classes 

Testing 18



Example..

Input Valid Eq Class Invalid Eq class

S 1: Contains numbers

2: Lower case letters

3: upper case letters

4: special chars

5: str len between 0-N(max)

1: non-ascii char

2: str len > N

N 6: Int in valid range 3: Int out of range

Testing 19



Example…
 Test cases (i.e. s , n) with first method

 s : str of len < N with lower case, upper case, numbers, 
and special chars, and n=5

 Plus test cases for each of the invalid eq classes

 Total test cases: 1 valid+3 invalid= 4 total

 With the second approach

 A separate str for each type of char (i.e. a str of numbers, 
one of lower case, …) + invalid cases

 Total test cases will be 6 + 3 = 9 

Testing 20



Boundary value analysis

 Programs often fail on special values

 These values often lie on boundary of equivalence 
classes

 Test cases that have boundary  values have high 
yield

 These are also called extreme cases

 A BV test case is a set of input data that lies on the 
edge of a eq class of input/output

Testing 21



Boundary value analysis (cont)...

 For  each equivalence class
 choose values on the edges of the class
 choose values just outside the edges

 E.g. if 0 <= x <= 1.0
 0.0 , 1.0 are edges inside
 -0.1,1.1 are just outside

 E.g. a bounded list - have a null list , a maximum value 
list

 Consider outputs also and have test cases generate 
outputs on the boundary

Testing 22



Boundary Value Analysis
 In BVA we determine the value of vars that should 

be used
 If input is a defined range, then there are 6 

boundary values plus 1 normal value (tot: 7)

 If multiple inputs, how to combine them into test 
cases; two strategies possible
 Try all possible combination of BV of diff variables, with 

n vars this will have 7n test cases!
 Select BV for one var; have other vars at normal values + 

1 of all normal values

Testing 23

Min Max



BVA.. (test cases for two vars – x and y)

Testing 24


