
Testing 1

Background
 Main objectives of a project: High Quality & High

Productivity (Q&P)
 Quality has many dimensions

 reliability, maintainability, interoperability etc.

 Reliability is perhaps the most important
 Reliability: The chances of software failing
 More defects => more chances of failure => lesser

reliability
 Hence quality goal: Have as few defects as

possible in the delivered software!

Testing 2

Faults & Failure
 Failure: A software failure occurs if the behavior of

the s/w is different from expected/specified.

 Fault: cause of software failure

 Fault = bug = defect

 Failure implies presence of defects

 A defect has the potential to cause failure.

 Definition of a defect is environment, project specific

Testing 3

Role of Testing
 Identify defects remaining after the review

processes!

 Reviews are human processes - can not catch all
defects

 There will be requirement defects, design defects
and coding defects in code

 Testing:

 Detects defects

 plays a critical role in ensuring quality.

Testing 4

Detecting defects in Testing
 During testing, a program is executed with a set of

test cases

 Failure during testing => defects are present

 No failure => confidence grows, but can not say
“defects are absent”

 Defects detected through failures

 To detect defects, must cause failures during testing

Testing 5

Test Oracle
 To check if a failure has occurred when executed with a

test case, we need to know the correct behavior

 That is we need a test oracle, which is often a human

 Human oracle makes each test case expensive as
someone has to check the correctness of its output

Testing 6

Common Test Oracles
 specifications and documentation,
 other products (for instance, an oracle for a software program

might be a second program that uses a different algorithm to
evaluate the same mathematical expression as the product under
test)

 an heuristic oracle that provides approximate results or exact
results for a set of a few test inputs,

 a statistical oracle that uses statistical characteristics,
 a consistency oracle that compares the results of one test

execution to another for similarity,
 a model-based oracle that uses the same model to generate and

verify system behavior,
 or a human being's judgment (i.e. does the program "seem" to

the user to do the correct thing?).

Testing 7

Role of Test cases
 Ideally would like the following for test cases

 No failure implies “no defects” or “high quality”

 If defects present, then some test case causes a failure

 Psychology of testing is important

 should be to ‘reveal’ defects(not to show that it works!)

 test cases must be “destructive”

 Role of test cases is clearly very critical

 Only if test cases are “good”, the confidence
increases after testing

Testing 8

Test case design

 During test planning, have to design a set of test
cases that will detect defects present

 Some criteria needed to guide test case selection

 Two approaches to design test cases
 functional or black box

 structural or white box

 Both are complimentary; we discuss a few
approaches/criteria for both

Testing 9

Black Box testing

 Software tested to be treated as a block box

 Specification for the black box is given

 The expected behavior of the system is used to design
test cases

 Test cases are determined solely from specification.

 Internal structure of code not used for test case design

Testing 10

Black Box Testing…

 Most thorough functional testing - exhaustive
testing

 Software is designed to work for an input space

 Test the software with all elements in the input space

 Infeasible - too high a cost

 Need better method for selecting test cases

 Different approaches have been proposed

Testing 11

Equivalence Class partitioning

 Divide the input space into equivalent classes

 If the software works for a test case from a class
the it is likely to work for all

 Can reduce the set of test cases if such equivalent
classes can be identified

 Approximate it by identifying classes for which
different behavior is specified

Testing 12

Equivalence Class Examples

In a computer store, the computer item can have a quantity

between -500 to +500. What are the equivalence classes?

Answer: Valid class: -500 <= QTY <= +500
Invalid class: QTY > +500
Invalid class: QTY < -500

Testing 13

Equivalence Class Examples
Account code can be 500 to 1000 or 0 to 499 or 2000 (the

field type is integer). What are the equivalence classes?

Answer:

Valid class: 0 <= account <= 499

Valid class: 500 <= account <= 1000

Valid class: 2000 <= account <= 2000

Invalid class: account < 0

Invalid class: 1000 < account < 2000

Invalid class: account > 2000

Testing 14

Equivalence class partitioning…

 Rationale: specification requires same behavior for
elements in a class

 Software likely to be constructed such that it either
fails for all or for none.

 E.g. if a function was not designed for negative
numbers then it will fail for all the negative numbers

 For robustness, should form equivalent classes for
invalid inputs also

Testing 15

Equivalent class partitioning..

 Every condition specified as input is an equivalent class

 Define invalid equivalent classes also

 E.g. range 0< value<Max specified

 one range is the valid class

 input < 0 is an invalid class

 input > max is an invalid class

 Whenever that entire range may not be treated
uniformly - split into classes

Testing 16

Equivalence class…
 Once eq classes selected for each of the inputs, test

cases have to be selected

 Select each test case covering as many valid equivalence
classes as possible

 Or, have a test case that covers at most one valid class for
each input

 Plus a separate test case for each invalid class

Testing 17

Example
 Consider a program that takes 2 inputs – a string s and

an integer n

 Program determines n most frequent characters

 Tester believes that programmer may deal with diff
types of chars separately

 Describe a valid and invalid equivalence classes

Testing 18

Example..

Input Valid Eq Class Invalid Eq class

S 1: Contains numbers

2: Lower case letters

3: upper case letters

4: special chars

5: str len between 0-N(max)

1: non-ascii char

2: str len > N

N 6: Int in valid range 3: Int out of range

Testing 19

Example…
 Test cases (i.e. s , n) with first method

 s : str of len < N with lower case, upper case, numbers,
and special chars, and n=5

 Plus test cases for each of the invalid eq classes

 Total test cases: 1 valid+3 invalid= 4 total

 With the second approach

 A separate str for each type of char (i.e. a str of numbers,
one of lower case, …) + invalid cases

 Total test cases will be 6 + 3 = 9

Testing 20

Boundary value analysis

 Programs often fail on special values

 These values often lie on boundary of equivalence
classes

 Test cases that have boundary values have high
yield

 These are also called extreme cases

 A BV test case is a set of input data that lies on the
edge of a eq class of input/output

Testing 21

Boundary value analysis (cont)...

 For each equivalence class
 choose values on the edges of the class
 choose values just outside the edges

 E.g. if 0 <= x <= 1.0
 0.0 , 1.0 are edges inside
 -0.1,1.1 are just outside

 E.g. a bounded list - have a null list , a maximum value
list

 Consider outputs also and have test cases generate
outputs on the boundary

Testing 22

Boundary Value Analysis
 In BVA we determine the value of vars that should

be used
 If input is a defined range, then there are 6

boundary values plus 1 normal value (tot: 7)

 If multiple inputs, how to combine them into test
cases; two strategies possible
 Try all possible combination of BV of diff variables, with

n vars this will have 7n test cases!
 Select BV for one var; have other vars at normal values +

1 of all normal values

Testing 23

Min Max

BVA.. (test cases for two vars – x and y)

Testing 24

