® INDEED

Software Testing



©CODER

Background
Main objectives of a project: High Quality & High
Productivity (Q&P)

Quality has many dimensions

e reliability, maintainability, interoperability etc.
Reliability is perhaps the most important
Reliability: The chances of software failing
More defects => more chances of failure => lesser
reliability
Hence (I:[uality goal: Have as few defects as
possible in the delivered software!

Testing



©CODER

Faults & Failure

Failure: A software failure occurs if the behavior of
the s/w is different from expected/specified.

Fault: cause of software failure
Fault = bug = defect
Failure implies presence of defects

A defect has the potential to cause failure.
Definition of a defect is environment, project specific

Testing 3



©CODER

Role of Testing

Identify defects remaining after the review
processes!

Reviews are human processes - can not catch all
defects

There will be requirement defects, design defects
and coding defects in code

Testing:
e Detects defects
e plays a critical role in ensuring quality.

Testing



B©CODER

Detecting defects in Testing

During testing, a program is executed with a set of
test cases

Failure during testing => defects are present

No failure => confidence grows, but can not say
“defects are absent”

Defects detected through failures
To detect defects, must cause failures during testing

Testing 5



©CODER

Test Oracle

To check if a failure has occurred when executed with a
test case, we need to know the correct behavior

That is we need a test oracle, which is often a human

Human oracle makes each test case expensive as
someone has to check the correctness of its output

Testing 6



©CODER

Common Test Oracles

specifications and documentation,

other products (for instance, an oracle for a software program
might be a second program that uses a different algorithm to
eval)uate the same mathematical expression as the product under
test

an heuristic oracle that provides approximate results or exact
results for a set of a few test inputs,

a statistical oracle that uses statistical characteristics,

a consistency oracle that compares the results of one test
execution to another for similarity,

a model-based oracle that uses the same model to generate and
verify system behavior,

or a human being's judgment (i.e. does the program "seem" to
the user to do the correct thing?).

Testing 7



©CODER

Role of Test cases

Ideally would like the following for test cases
e No failure implies “no defects” or “high quality”
o If defects present, then some test case causes a failure

Psychology of testing is important
e should be to ‘reveal’ defects(not to show that it works!)
* test cases must be “destructive”

Role of test cases is clearly very critical

Only if test cases are “good”, the confidence
increases after testing

Testing



©CODER

Test case design

During test planning, have to design a set of test
cases that will detect defects present

Some criteria needed to guide test case selection

Two approaches to design test cases
e functional or black box
e structural or white box

Both are complimentary; we discuss a few
approaches/criteria for both

Testing



©CODER

Black Box testing

Software tested to be treated as a block box
Specification for the black box is given

The expected behavior of the system is used to design
test cases

Test cases are determined solely from specification.
Internal structure of code not used for test case design

Testing 10



©CODER

Black Box Testing...

Most thorough functional testing - exhaustive
testing

 Software is designed to work for an input space
e Test the software with all elements in the input space

Infeasible - too high a cost
Need better method for selecting test cases

Different approaches have been proposed

Testing

11



B©CODER

Equivalence Class partitioning

Divide the input space into equivalent classes

If the software works for a test case from a class
the it is likely to work for all

Can reduce the set of test cases if such equivalent
classes can be identified

Approximate it by identifying classes for which
different behavior is specified

Testing 12



©CODER

Equivalence Class Examples

In a computer store, the computer item can have a quantity

between -500 to +500. What are the equivalence classes?

Answer: Valid class: -500 <= QTY <= +500
Invalid class: QTY > +500
Invalid class: QTY < -500

Testing 13



B©CODER

Equivalence Class Examples

Account code can be 500 to 1000 or o to 499 or 2000 (the
field type is integer). What are the equivalence classes?

Answer:

Valid class: 0 <= account <= 499
Valid class: 500 <= account <= 1000
Valid class: 2000 <= account <= 2000
Invalid class: account < o

Invalid class: 1000 < account < 2000
Invalid class: account > 2000

Testing 14



©CODER

Equivalence class partitioning...

Rationale: specification requires same behavior for
elements in a class

Software likely to be constructed such that it either
fails for all or for none.

E.g. if a function was not designed for negative
numbers then it will fail for all the negative numbers

For robustness, should form equivalent classes for
invalid inputs also

Testing 15



B©CODER

Equivalent class partitioning..

Every condition specified as input is an equivalent class
Define invalid equivalent classes also

E.g. range o< value<Max specified
e one range is the valid class
e input < o is an invalid class
e input > max is an invalid class

Whenever that entire range may not be treated
uniformly - split into classes

Testing 16



B©CODER

Equivalence class...

Once eq classes selected for each of the inputs, test
cases have to be selected

e Select each test case covering as many valid equivalence
classes as possible

e Or, have a test case that covers at most one valid class for
each input

e Plus a separate test case for each invalid class

Testing 17



©CODER

Example

Consider a program that takes 2 inputs - a string s and
an integer n

Program determines n most frequent characters

Tester believes that programmer may deal with diff
types of chars separately

Describe a valid and invalid equivalence classes

Testing 18



Example..

©CODER

Input Valid Eq Class Invalid Eq class
S 1: Contains numbers 1: non-ascii char
2: Lower case letters 2: strlen > N
3: upper case letters
4: special chars
5: str len between 0-N(max)
N 6: Int in valid range 3: Int out of range

Testing

19




©CODER

Example...

Test cases (i.e. s, n) with first method

e s :strof len < N with lower case, upper case, numbers,
and special chars, and n=5

 Plus test cases for each of the invalid eq classes
e Total test cases: 1 valid+3 invalid= 4 total

With the second approach

e A separate str for each type of char (i.e. a str of numbers,
one of lower case, ...) + invalid cases

e Total test caseswillbe 6 + 3 =9

Testing 20



©CODER

Boundary value analysis

Programs often fail on special values

These values often lie on boundary of equivalence
classes

Test cases that have boundary values have high
yield

These are also called extreme cases

A BV test case is a set of input data that lies on the
edge of a eq class of input/output

Testing 21



©CODER

Boundary value analysis (cont)...

For each equivalence class

e choose values on the edges of the class

e choose values just outside the edges
E.g. ifo<=x<=1.0

* 0.0, 1.0 are edges inside

e -0.1,1.1are just outside
E.g. a bounded list - have a null list , a maximum value
list
Consider outputs also and have test cases generate
outputs on the boundary

Testing 22



©CODER

Boundary Value Analysis

In BVA we determine the value of vars that should
e used

If input is a defined range, then there are 6
boundary values plus 1 normal value (tot: 7)

—c*c o 000

Min Max
If multiple inputs, how to combine them into test

cases; two strategies possible

e Try all possible combination of BV of diff variables, with
n vars this will have 7 test cases!

e Select BV for one var; have other vars at normal values +
1 of all normal values

Testing 23



Ll

ECODERT3:

BVA.. (test cases for two vars —x and y)

A
Ymax
X X X X X X X
Y
X
. A
len
X
X min X max
X

Testing 24



